So are you acknowledging that you don't need to have liquified H2, or are you pretending Mirai and other hydrogen cars don't exist? Sealed caverns can't store grid levels of hydrogen at pressure, it has to be liquified?
Energy density of wood chips is a red herring; does the Mirai have 400 mile range or not? The temperature of the reaction doesn't really matter at all to the efficiency; there are high temperature processes that are also efficient. Your comments are just long lists of these false premises, like that H2 has to be liquified.
What's great about H2 as chemical energy storage is that it's a common denominator that can be more easily converted to or from than other fuels. Ammonia is one of many ways hydrogen can be transported and there's no physics reason why it can't be efficient.
I asked you a question. How will the Hydrogen get transported from the very large, inefficient hydrogen production plant to your fueling station? Are you going to run a pipeline? Cart it in trucks? Convert it on site? How will it get there?
Lets pick trucks. You want to run 700 bar hydrogen in Carbon Fiber tanks on trucks? Okay, that will require (something like) fifty times more trucks than are currently used to cart petrol.
You want to pick Ammonia carted in trucks? Sure! At double the energy density of Hydrogen, it is still the lowest energy density fuel on the table (see figure 1, previous post) that isn't hydrogen. It is still lower energy density than Wood Chips. It still takes vastly more trucks and drivers and tire rubber than any other. Except now you have to add huge amounts of energy at the other end to turn it back into Hydrogen.
Let us draw a comparison. Natural Gas (mostly methane) is more than three times the energy density of Hydrogen. Moving it by trucks and ships isn't economical without liquifying it first. Low pressure natural gas is run through pipes or not at all.
To manufacture Ammonia you will require hydrogen (made from methane at 3 to 1) and nitrogen in the presence of intense heat and huge pressures. So next to your hydrogen plant you will have a second, industrial scale plant that heats thousands of tons of gas to 500 degrees, boiling it to a pressure of 200 atmospheres, where it will react with an iron catalyst.
Even if the reaction were very efficient, it takes a known quantity of energy to heat the reactants to temperature. You know how heating water for your home costs money? Well heating thousands of tons of gas also requires energy and costs money. Right now the process is only economically viable with access to low cost, low quality natural gas, a lot of which is burned for heat to bring the reactants up to temperature and pressure.
The Toyota Mirai is advertised as being 'zero emission' and 'clean'. It absolutely isn't. Current industrial hydrogen production is dirty as hell.
Even if low pressure hydrogen is the prefect energy storage method for cars, manufacturing it is eye-wateringly expensive, and not at all clean. Transporting the hydrogen is a damn nightmare, and more to the point, vastly expensive.
If we imagine a totally free source of hydrogen (sunlight falls on a genie that waves a wand in a factory) the logistics considerations to get that energy to your car would cost several times the costs of your current energy storage method.
The point I am making, isn't that it can't be done, or that it shouldn't be done. The point is that it will cost a lot more. Three quarters of the world will be riding bicycles because they can't afford hydrogen.... which is still made from natural gas and dirty as hell.
Cart it in trucks? Convert it on site? How will it get there?
Think about it for more than half a second. People are paying for usable energy - miles of range. Mirai shows roughly the same usable energy per volume and how does gasoline get there? By truck, so H2 could be delivered the same way.
Of course with H2 there are other alternatives, like if power is very cheap it could be made on site whereas gasoline that's not really possible because it's not as simple chemically.
The Toyota Mirai is advertised as being 'zero emission' and 'clean'. It absolutely isn't. Current industrial hydrogen production is dirty as hell.
It's just constant red herrings and nonsequiturs with you. Who's arguing whether it's putting CO2 into the air or not? It'll be made from cracking natural gas for a long while until electricity is very cheap. Could be made in many other ways though.
With high temperature reactions you use the output to heat the input. You're not using energy to heat all the material from scratch and then throwing that energy away. The reaction temperature has some bearing on efficiency, but not in the simplistic way you talk about 'it's 500 decrees C dude!'.
You started off with your thesis that it has to be liquified and kept at near zero temperatures to be useful. That's false so your conclusions based on it are false. End of story.
Think about it for more than half a second. People are paying for usable energy - miles of range. Mirai shows roughly the same usable energy per volume and how does gasoline get there? By truck, so H2 could be delivered the same way.
Sure. By taking something like fifty times more trips with the same truck, or perhaps 50 trucks and drivers instead.
With high temperature reactions you use the output to heat the input.
There are still energy inefficiencies. There are current commercial Hydrogen production plants available to study. There are many commercial Ammonia plants to study.
I have done a paper on the end to end efficiency of hydrogen production for maritime use WRT Australia as a net energy exporter. It went something like: "What if Australia put up a million square KM of PV Solar Panels. How would How would Australia Export the energy?" I cited sources and had reliable figures of end to end process efficiency.
You started off with your thesis that it has to be liquified and kept at near zero temperatures to be useful.
No, I did not. It is right there in black and white. I said that:
Hydrogen is a low density gas. To make it energy-dense enough to be viable for energy storage, it needs to be liquified.
Which is entirely due to the logistics of getting it from the point of manufacture (say, the Australian Desert Solar Farms) to the point of use.
The idea "We can just make 50 trips!" adds to the cost! You haven't given a single example of a viable logistics method. Hopes and dreams for a magic future don't actually solve any problems.
I am all for advances in electrolysis, but so far the gold standard is Polymer Electrolyte Membrane cells. The worlds biggest plant is 20 MW, which is tiny. The individual cells are expensive and they wear out. The Magic 8Ball says "Check back in 2030".
Look, I hope you get your golden future of cheap hydrogen energy storage. I hope you get a jetpack too. But right now all you haves are pipe-dreams and Jam Tomorrow, all pushed by the same geniuses that came up with "Carbon Capture" on coal plants; which neatly doubles the coal burned for the same electricity generation. Like carbon capture, any solution which starts by doubling the price of energy is doomed to failure, and hydrogen is much more expensive than double the cost an alternative.
If I were to put down cash, I'd bet that we get an alternative battery technology and plug in Electric Vehicles before we cheap on-site electrolysis. Even a significant improvement in the anode and cathode of LiPo or LiFePo batteries could halve the size and cost of EV battery packs. There are a number of candidates.
People are paying for usable energy - miles of range. Mirai shows roughly the same usable energy per volume
Sure. By taking something like fifty times more trips with the same truck, or perhaps 50 trucks and drivers instead.
So roughly the same volume, same sized truck can deliver H2 equivalent to the same number of miles driven as the gasoline truck... but you'll magically need 50 more of them.
That's the stupidest thing I've heard yet.
You've clearly done at least some basic research, which is why it's baffling for you to make these absurd claims like this and the others. Maybe you're a chatbot that can do 2+2 but not 200+200? It's weird.
So are you acknowledging that you don't need to have liquified H2, or are you pretending Mirai and other hydrogen cars don't exist? Sealed caverns can't store grid levels of hydrogen at pressure, it has to be liquified?
Energy density of wood chips is a red herring; does the Mirai have 400 mile range or not? The temperature of the reaction doesn't really matter at all to the efficiency; there are high temperature processes that are also efficient. Your comments are just long lists of these false premises, like that H2 has to be liquified.
What's great about H2 as chemical energy storage is that it's a common denominator that can be more easily converted to or from than other fuels. Ammonia is one of many ways hydrogen can be transported and there's no physics reason why it can't be efficient.
Read my post again.
I asked you a question. How will the Hydrogen get transported from the very large, inefficient hydrogen production plant to your fueling station? Are you going to run a pipeline? Cart it in trucks? Convert it on site? How will it get there?
Lets pick trucks. You want to run 700 bar hydrogen in Carbon Fiber tanks on trucks? Okay, that will require (something like) fifty times more trucks than are currently used to cart petrol.
You want to pick Ammonia carted in trucks? Sure! At double the energy density of Hydrogen, it is still the lowest energy density fuel on the table (see figure 1, previous post) that isn't hydrogen. It is still lower energy density than Wood Chips. It still takes vastly more trucks and drivers and tire rubber than any other. Except now you have to add huge amounts of energy at the other end to turn it back into Hydrogen.
Let us draw a comparison. Natural Gas (mostly methane) is more than three times the energy density of Hydrogen. Moving it by trucks and ships isn't economical without liquifying it first. Low pressure natural gas is run through pipes or not at all.
To manufacture Ammonia you will require hydrogen (made from methane at 3 to 1) and nitrogen in the presence of intense heat and huge pressures. So next to your hydrogen plant you will have a second, industrial scale plant that heats thousands of tons of gas to 500 degrees, boiling it to a pressure of 200 atmospheres, where it will react with an iron catalyst.
Even if the reaction were very efficient, it takes a known quantity of energy to heat the reactants to temperature. You know how heating water for your home costs money? Well heating thousands of tons of gas also requires energy and costs money. Right now the process is only economically viable with access to low cost, low quality natural gas, a lot of which is burned for heat to bring the reactants up to temperature and pressure.
The Toyota Mirai is advertised as being 'zero emission' and 'clean'. It absolutely isn't. Current industrial hydrogen production is dirty as hell.
Even if low pressure hydrogen is the prefect energy storage method for cars, manufacturing it is eye-wateringly expensive, and not at all clean. Transporting the hydrogen is a damn nightmare, and more to the point, vastly expensive.
If we imagine a totally free source of hydrogen (sunlight falls on a genie that waves a wand in a factory) the logistics considerations to get that energy to your car would cost several times the costs of your current energy storage method.
The point I am making, isn't that it can't be done, or that it shouldn't be done. The point is that it will cost a lot more. Three quarters of the world will be riding bicycles because they can't afford hydrogen.... which is still made from natural gas and dirty as hell.
Think about it for more than half a second. People are paying for usable energy - miles of range. Mirai shows roughly the same usable energy per volume and how does gasoline get there? By truck, so H2 could be delivered the same way.
Of course with H2 there are other alternatives, like if power is very cheap it could be made on site whereas gasoline that's not really possible because it's not as simple chemically.
It's just constant red herrings and nonsequiturs with you. Who's arguing whether it's putting CO2 into the air or not? It'll be made from cracking natural gas for a long while until electricity is very cheap. Could be made in many other ways though.
With high temperature reactions you use the output to heat the input. You're not using energy to heat all the material from scratch and then throwing that energy away. The reaction temperature has some bearing on efficiency, but not in the simplistic way you talk about 'it's 500 decrees C dude!'.
You started off with your thesis that it has to be liquified and kept at near zero temperatures to be useful. That's false so your conclusions based on it are false. End of story.
Sure. By taking something like fifty times more trips with the same truck, or perhaps 50 trucks and drivers instead.
There are still energy inefficiencies. There are current commercial Hydrogen production plants available to study. There are many commercial Ammonia plants to study.
I have done a paper on the end to end efficiency of hydrogen production for maritime use WRT Australia as a net energy exporter. It went something like: "What if Australia put up a million square KM of PV Solar Panels. How would How would Australia Export the energy?" I cited sources and had reliable figures of end to end process efficiency.
No, I did not. It is right there in black and white. I said that:
Which is entirely due to the logistics of getting it from the point of manufacture (say, the Australian Desert Solar Farms) to the point of use.
The idea "We can just make 50 trips!" adds to the cost! You haven't given a single example of a viable logistics method. Hopes and dreams for a magic future don't actually solve any problems.
I am all for advances in electrolysis, but so far the gold standard is Polymer Electrolyte Membrane cells. The worlds biggest plant is 20 MW, which is tiny. The individual cells are expensive and they wear out. The Magic 8Ball says "Check back in 2030".
Look, I hope you get your golden future of cheap hydrogen energy storage. I hope you get a jetpack too. But right now all you haves are pipe-dreams and Jam Tomorrow, all pushed by the same geniuses that came up with "Carbon Capture" on coal plants; which neatly doubles the coal burned for the same electricity generation. Like carbon capture, any solution which starts by doubling the price of energy is doomed to failure, and hydrogen is much more expensive than double the cost an alternative.
If I were to put down cash, I'd bet that we get an alternative battery technology and plug in Electric Vehicles before we cheap on-site electrolysis. Even a significant improvement in the anode and cathode of LiPo or LiFePo batteries could halve the size and cost of EV battery packs. There are a number of candidates.
Have a great day.
So roughly the same volume, same sized truck can deliver H2 equivalent to the same number of miles driven as the gasoline truck... but you'll magically need 50 more of them.
That's the stupidest thing I've heard yet.
You've clearly done at least some basic research, which is why it's baffling for you to make these absurd claims like this and the others. Maybe you're a chatbot that can do 2+2 but not 200+200? It's weird.