So are you acknowledging that you don't need to have liquified H2, or are you pretending Mirai and other hydrogen cars don't exist? Sealed caverns can't store grid levels of hydrogen at pressure, it has to be liquified?
Energy density of wood chips is a red herring; does the Mirai have 400 mile range or not? The temperature of the reaction doesn't really matter at all to the efficiency; there are high temperature processes that are also efficient. Your comments are just long lists of these false premises, like that H2 has to be liquified.
What's great about H2 as chemical energy storage is that it's a common denominator that can be more easily converted to or from than other fuels. Ammonia is one of many ways hydrogen can be transported and there's no physics reason why it can't be efficient.
So are you acknowledging that you don't have to have liquified H2, or are you pretending Mirai and other hydrogen cars don't exist? Sealed caverns can't store grid levels of hydrogen at pressure, it has to be liquified?
Energy density of wood chips is a red herring; does the Mirai have 400 mile range or not? The temperature of the reaction doesn't really matter at all to the efficiency; there are high temperature processes that are also efficient. Your comments are just long lists of these false premises, like that H2 has to be liquified.
What's great about H2 as chemical energy storage is that it's a common denominator that can be more easily converted to or from than other fuels. Ammonia is one of many ways hydrogen can be transported and there's no physics reason why it can't be efficient.